
myExperience Overloading Subtyping

Overloading and Subtyping

Rob Sison
UNSW

Term 3 2024

1

myExperience Overloading Subtyping

myExperience

The myExperience survey is out.

I would be very grateful if you could take 5 minutes out of your
day to go on Moodle and fill out the survey. Even if you don’t
have much to say.

2

myExperience Overloading Subtyping

Motivation

Suppose we added Float to MinHS.
Ideally, the arithmetic operations should be able to work on both
Int and Float.

4 + 6 :: Int

4.3 + 5.1 :: Float

Similarly, a numeric literal should take on whatever type is inferred
from context.

(5 :: Int) mod 3

sin(5 :: Float)

3

myExperience Overloading Subtyping

Without Overloading

We effectively have two functions:

(+Int) :: Int → Int → Int

(+Float) :: Float → Float → Float

We would like to refer to both of these functions by the same name
and have the specific implementation chosen based on the type.

Such type-directed name resolution is called ad-hoc polymorphism
or overloading.

4

myExperience Overloading Subtyping

Type Classes

Type classes are a common approach to ad-hoc polymorphism, and
exist in various languages under different names:

Type Classes in Haskell

Traits in Rust

Implicits in Scala

Protocols in Swift

Contracts in Go 2

Concepts in C++

Other languages approximate with subtype polymorphism
(coming)

5

myExperience Overloading Subtyping

Type Classes

A type class is a set of types for which implementations (instances)
have been provided for various functions, called methods1.

Example (Numeric Types)

In Haskell, the types Int, Float, Double etc. are all instances of
the type class Num, which has methods such as (+), negate, etc.

Example (Equality)

In Haskell, the Eq type class contains methods (==) and (/=) for
computable equality. What types cannot be an instance of Eq?

1Nothing to do with OO methods.
6

myExperience Overloading Subtyping

Notation

We write:
f :: ∀a. P ⇒ τ

To indicate that f has the type τ where a can be instantiated to
any type under the condition that the constraint P is satisfied.
Typically, P is a list of instance constraints, such as Num a or Eq b.

Example

(+) :: ∀a. (Num a) ⇒ a → a → a

(==) :: ∀a. (Eq a) ⇒ a → a → Bool

Is (1 :: Int) + 4.4 a well-typed expression?
No. The type of (+) requires its arguments to have the same type.

7

myExperience Overloading Subtyping

Extending MinHS

Extending implicitly typed MinHS with type classes:

Predicates P ::= C τ
Polytypes π ::= τ | ∀a. π | P ⇒ π
Monotypes τ ::= Int | Bool | τ + τ | · · ·
Class names C

Our typing judgement Γ ⊢ e : π now includes a set of type class
axiom schema:

A | Γ ⊢ e : π

This set contains predicates for all known type class instances.

8

myExperience Overloading Subtyping

Typing Rules

The existing rules now just thread A through.
To use an overloaded type, we must show that the predicate is
satisfied by the known axioms:

A | Γ ⊢ e : P ⇒ π A ⊩ P

e : π
Inst

Right now, A ⊩ P iff P ∈ A, but we will complicate this situation
later.

We can introduce constrained types with the Gen rule:

P,A | Γ ⊢ e : π

A | Γ ⊢ e : P ⇒ π
Gen

9

myExperience Overloading Subtyping

Example

Suppose we wanted to show that 3.2 + 4.4 :: Float.

1 (+) :: ∀a. (Num a) ⇒ a → a → a ∈ Γ.

2 Num Float ∈ A.

3 Using AllE (from previous lecture), we can conclude
(+) :: (Num Float) ⇒ Float → Float → Float.

4 Using Inst (on previous slide) and 2 , we can conclude
(+) :: Float → Float → Float

5 By the function application rule, we can conclude
3.2 + 4.4 :: Float as required.

10

myExperience Overloading Subtyping

Dictionaries and Resolution
This is called ad-hoc polymorphism because the type checker
removes it — it is not a fundamental language feature, but merely
a naming convenience.
The type checker converts ad-hoc polymorphism to parametric
polymorphism.
Type classes are converted to types:

class Eq a where
(==) : a → a → Bool

(/=) : a → a → Bool

becomes

type EqDict a = (a → a → Bool× a → a → Bool)

A dictionary contains all the method implementations of a type
class for a specific type.

11

myExperience Overloading Subtyping

Dictionaries and Resolution
Instances become values of the dictionary type:

instance Eq Bool where
True == True = True

False == False = True

== = False

a /= b = not (a == b)

becomes

True ==Bool True = True

False ==Bool False = True

==Bool = False

a /=Bool b = not (a ==Bool b)

eqBoolDict = ((==Bool), (/=Bool))

12

myExperience Overloading Subtyping

Dictionaries and Resolution

Programs that rely on overloading now take dictionaries as
parameters:

same :: ∀a. (Eq a) ⇒ [a] → Bool

same [] = True

same (x : []) = True

same (x : y : xs) = x == y ∧ same (y : xs)

Becomes:

same :: ∀a. (EqDict a) → [a] → Bool

same eq [] = True

same eq (x : []) = True

same eq (x : y : xs) = (fst eq) x y ∧ same eq (y : xs)

13

myExperience Overloading Subtyping

Generative Instances

We can make instances also predicated on some constraints:

instance (Eq a) ⇒ (Eq [a]) where
[] == [] = True

(x : xs) == (y : ys) = x == y ∧ (xs == ys)
== = False

a /= b = not (a == b)

Such instances are transformed into functions:

eqList :: EqDict a → EqDict [a]

Our set of axiom schema A now includes implications, like
(Eq a) ⇒ (Eq [a]). This makes the relation A ⊩ P much more
complex to solve.

14

myExperience Overloading Subtyping

Coherence

Some languages (such as Haskell and Rust) insist that there is only
one instance per class per type in the entire program. It achieves
this by requiring that all instances are either:

Defined along with the definition of the type class, or

Defined along with the definition of the type.

This rules out so-called orphan instances.

There are a number of trade-offs with this decision:

Modularity has been compromised but,

Types like Data.Set can exploit this coherence to enforce
invariants.

15

myExperience Overloading Subtyping

Static Dispatch

Typically, the compiler can inline all dictionaries to their usage
sites, thus eliminating all run-time cost for using type classes.
This is only not possible if the exact type being used cannot be
determined at compile-time, such as with polymorphic recursion
etc.

16

myExperience Overloading Subtyping

Subtyping

17

myExperience Overloading Subtyping

Subtyping

To add subtyping to a language, we define a partial order2 on
types τ ≤ ρ and a rule of subsumption:

Γ ⊢ e : τ τ ≤ ρ

Γ ⊢ e : ρ

Type inference with subtyping is undecidable in general. Therefore,
subsumptions (called upcasts) are sometimes made explicit (e.g. in
OCaml):

Γ ⊢ e : τ τ ≤ ρ

Γ ⊢ upcast ρ e : ρ

2Remember discrete maths, or check the glossary.
18

myExperience Overloading Subtyping

What is Subtyping?

What this partial order τ ≤ ρ actually means is up to the language.
There are two main approaches:

Most common: upcasts have no dynamic behaviour, i.e.
upcast v 7→ v . This requires that any value of type τ could
also be judged to have type ρ. If types are viewed as sets, this
could be viewed as a subset relation.

Uncommon: where upcasts cause a coercion to occur,
actually converting the value from τ to ρ at runtime.

Observation: By using an identity function as a coercion, the
coercion view is more general.

19

myExperience Overloading Subtyping

Desirable Properties

Coercion is more general, but can have confusing results.

Example

Suppose Int ≤ Float, Float ≤ String and Int ≤ String.
There are now two ways to coerce an Int to a String:

1 Directly: "3"

2 via Float: "3.0"

Typically, we would enforce that the subtype coercions are
coherent, such that no matter which coercion is chosen, the same
result is produced.

20

myExperience Overloading Subtyping

Behavioural Subtyping

Another constraint is that the syntactic notion of subtyping should
correspond to something semantically. In other words, if we know
τ ≤ ρ, then it should be reasonable to replace any value of type ρ
with a value of type τ without any observable difference.

Liskov Substitution Principle

Let φ(x) be a property provable about objects x of type ρ. Then
φ(y) should be true for objects y of type τ where τ ≤ ρ.

Languages such as Java and C++, which allow for user-defined
subtyping relationships (inheritance), put the onus on the user to
ensure this condition is met.

21

myExperience Overloading Subtyping

Product Types

Assuming a basic rule Int ≤ Float, how do we define subtyping
for our compound data types?
What is the relationship between these types?

(Int× Int)

(Float× Float)

(Float× Int)

(Int× Float)

τ1 ≤ ρ1 τ2 ≤ ρ2

(τ1 × τ2) ≤ (ρ1 × ρ2)

22

myExperience Overloading Subtyping

Sum Types

What is the relationship between these types?

(Int+ Int)

(Float+ Float)

(Float+ Int)

(Int+ Float)

τ1 ≤ ρ1 τ2 ≤ ρ2

(τ1 + τ2) ≤ (ρ1 + ρ2)

Any other compound types?

23

myExperience Overloading Subtyping

Functions

What is the relationship between these types?

(Int → Int)

(Float → Float)

(Float → Int)

(Int → Float)

The relation is flipped on the left hand side!

ρ1 ≤ τ1 τ2 ≤ ρ2

(τ1 → τ2) ≤ (ρ1 → ρ2)

24

myExperience Overloading Subtyping

Variance

The way a type constructor (such as +, ×, Maybe or →) interacts
with subtyping is called its variance. For a type constructor C , and
τ ≤ ρ:

If C τ ≤ C ρ, then C is covariant.
Examples: Products (both arguments), Sums (both
arguments), Function return type, . . .

If C ρ ≤ C τ , then C is contravariant.
Examples: Function argument type, . . .

If it is neither covariant nor contravariant then it is
(confusingly) called invariant.
Examples: data Endo a = E (a → a)

25

myExperience Overloading Subtyping

Stuffing it up

Many languages have famously stuffed this up, at the expense of
type safety.

A few years later...

26

myExperience Overloading Subtyping

Java too

Java (and its Seattle-based cousin, C♯) also broke type safety with
incorrect variance in arrays.

We will demonstrate how this violates preservation, time
permitting.

(Java redeemed itself by introducing invariant collections along
with parametric polymorphism in 2004. These were believed sound
until 2016.)

27

	myExperience
	

	Overloading
	

	Subtyping
	

